【DB系列】SpringBoot缓存注解@Cacheable之自定义key策略及缓存失效时间指定

文章目录
  1. I. 项目环境
    1. 1. 项目依赖
  2. II. 扩展知识点
    1. 1. key生成策略
    2. 2. 自定义key生成策略
    3. 3. 缓存失效时间
    4. 4. 自定义失效时间扩展
    5. 5. 小结
  3. III. 不能错过的源码和相关知识点
    1. 0. 项目
    2. 1. 一灰灰Blog

上一篇博文介绍了Spring中缓存注解@Cacheable @CacheEvit @CachePut的基本使用,接下来我们将看一下更高级一点的知识点

  • key生成策略
  • 超时时间指定

I. 项目环境

1. 项目依赖

本项目借助SpringBoot 2.2.1.RELEASE + maven 3.5.3 + IDEA + redis5.0进行开发

开一个web服务用于测试

1
2
3
4
5
6
7
8
9
10
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
</dependencies>

II. 扩展知识点

1. key生成策略

对于@Cacheable注解,有两个参数用于组装缓存的key

  • cacheNames/value: 类似于缓存前缀
  • key: SpEL表达式,通常根据传参来生成最终的缓存key

默认的redisKey = cacheNames::key (注意中间的两个冒号)

1
2
3
4
5
6
7
8
9
10
11
12
/**
* 没有指定key时,采用默认策略 {@link org.springframework.cache.interceptor.SimpleKeyGenerator } 生成key
* <p>
* 对应的key为: k1::id
* value --> 等同于 cacheNames
* @param id
* @return
*/
@Cacheable(value = "k1")
public String key1(int id) {
return "defaultKey:" + id;
}

缓存key默认采用SimpleKeyGenerator来生成,比如上面的调用,如果id=1, 那么对应的缓存key为 k1::1

如果没有参数,或者多个参数呢?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
* redis_key : k2::SimpleKey[]
*
* @return
*/
@Cacheable(value = "k0")
public String key0() {
return "key0";
}

/**
* redis_key : k2::SimpleKey[id,id2]
*
* @param id
* @param id2
* @return
*/
@Cacheable(value = "k2")
public String key2(Integer id, Integer id2) {
return "key1" + id + "_" + id2;
}


@Cacheable(value = "k3")
public String key3(Map map) {
return "key3" + map;
}

然后写一个测试case

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
@RestController
@RequestMapping(path = "extend")
public class ExtendRest {
@Autowired
private RedisTemplate redisTemplate;

@Autowired
private ExtendDemo extendDemo;

@GetMapping(path = "default")
public Map<String, Object> key(int id) {
Map<String, Object> res = new HashMap<>();
res.put("key0", extendDemo.key0());
res.put("key1", extendDemo.key1(id));
res.put("key2", extendDemo.key2(id, id));
res.put("key3", extendDemo.key3(res));

// 这里将缓存key都捞出来
Set<String> keys = (Set<String>) redisTemplate.execute((RedisCallback<Set<String>>) connection -> {
Set<byte[]> sets = connection.keys("k*".getBytes());
Set<String> ans = new HashSet<>();
for (byte[] b : sets) {
ans.add(new String(b));
}
return ans;
});

res.put("keys", keys);
return res;
}
}

访问之后,输出结果如下

1
2
3
4
5
6
7
8
9
10
11
12
{
"key1": "defaultKey:1",
"key2": "key11_1",
"key0": "key0",
"key3": "key3{key1=defaultKey:1, key2=key11_1, key0=key0}",
"keys": [
"k2::SimpleKey [1,1]",
"k1::1",
"k3::{key1=defaultKey:1, key2=key11_1, key0=key0}",
"k0::SimpleKey []"
]
}

小结一下

  • 单参数:cacheNames::arg
  • 无参数: cacheNames::SimpleKey [], 后面使用 SimpleKey []来补齐
  • 多参数: cacheNames::SimpleKey [arg1, arg2...]
  • 非基础对象:cacheNames::obj.toString()

2. 自定义key生成策略

如果希望使用自定义的key生成策略,只需继承KeyGenerator,并声明为一个bean

1
2
3
4
5
6
7
@Component("selfKeyGenerate")
public static class SelfKeyGenerate implements KeyGenerator {
@Override
public Object generate(Object target, Method method, Object... params) {
return target.getClass().getSimpleName() + "#" + method.getName() + "(" + JSON.toJSONString(params) + ")";
}
}

然后在使用的地方,利用注解中的keyGenerator来指定key生成策略

1
2
3
4
5
6
7
8
9
10
/**
* 对应的redisKey 为: get vv::ExtendDemo#selfKey([id])
*
* @param id
* @return
*/
@Cacheable(value = "vv", keyGenerator = "selfKeyGenerate")
public String selfKey(int id) {
return "selfKey:" + id + " --> " + UUID.randomUUID().toString();
}

测试用例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
@GetMapping(path = "self")
public Map<String, Object> self(int id) {
Map<String, Object> res = new HashMap<>();
res.put("self", extendDemo.selfKey(id));
Set<String> keys = (Set<String>) redisTemplate.execute((RedisCallback<Set<String>>) connection -> {
Set<byte[]> sets = connection.keys("vv*".getBytes());
Set<String> ans = new HashSet<>();
for (byte[] b : sets) {
ans.add(new String(b));
}
return ans;
});
res.put("keys", keys);
return res;
}

缓存key放在了返回结果的keys中,输出如下,和预期的一致

1
2
3
4
5
6
{
"keys": [
"vv::ExtendDemo#selfKey([1])"
],
"self": "selfKey:1 --> f5f8aa2a-0823-42ee-99ec-2c40fb0b9338"
}

3. 缓存失效时间

以上所有的缓存都没有设置失效时间,实际的业务场景中,不设置失效时间的场景有;但更多的都需要设置一个ttl,对于Spring的缓存注解,原生没有额外提供一个指定ttl的配置,如果我们希望指定ttl,可以通过RedisCacheManager来完成

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
private RedisCacheConfiguration getRedisCacheConfigurationWithTtl(Integer seconds) {
// 设置 json 序列化
Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<>(Object.class);
ObjectMapper om = new ObjectMapper();
om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
jackson2JsonRedisSerializer.setObjectMapper(om);

RedisCacheConfiguration redisCacheConfiguration = RedisCacheConfiguration.defaultCacheConfig();
redisCacheConfiguration = redisCacheConfiguration.serializeValuesWith(
RedisSerializationContext.SerializationPair.fromSerializer(jackson2JsonRedisSerializer)).
// 设置过期时间
entryTtl(Duration.ofSeconds(seconds));

return redisCacheConfiguration;
}

上面是一个设置RedisCacheConfiguration的方法,其中有两个点

  • 序列化方式:采用json对缓存内容进行序列化
  • 失效时间:根据传参来设置失效时间

如果希望针对特定的key进行定制化的配置的话,可以如下操作

1
2
3
4
5
6
7
private Map<String, RedisCacheConfiguration> getRedisCacheConfigurationMap() {
Map<String, RedisCacheConfiguration> redisCacheConfigurationMap = new HashMap<>(8);
// 自定义设置缓存时间
// 这个k0 表示的是缓存注解中的 cacheNames/value
redisCacheConfigurationMap.put("k0", this.getRedisCacheConfigurationWithTtl(60 * 60));
return redisCacheConfigurationMap;
}

最后就是定义我们需要的RedisCacheManager

1
2
3
4
5
6
7
8
9
10
@Bean
public RedisCacheManager cacheManager(RedisConnectionFactory redisConnectionFactory) {
return new RedisCacheManager(
RedisCacheWriter.nonLockingRedisCacheWriter(redisConnectionFactory),
// 默认策略,未配置的 key 会使用这个
this.getRedisCacheConfigurationWithTtl(60),
// 指定 key 策略
this.getRedisCacheConfigurationMap()
);
}

在前面的测试case基础上,添加返回ttl的信息

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
private Object getTtl(String key) {
return redisTemplate.execute(new RedisCallback() {
@Override
public Object doInRedis(RedisConnection connection) throws DataAccessException {
return connection.ttl(key.getBytes());
}
});
}

@GetMapping(path = "default")
public Map<String, Object> key(int id) {
Map<String, Object> res = new HashMap<>();
res.put("key0", extendDemo.key0());
res.put("key1", extendDemo.key1(id));
res.put("key2", extendDemo.key2(id, id));
res.put("key3", extendDemo.key3(res));

Set<String> keys = (Set<String>) redisTemplate.execute((RedisCallback<Set<String>>) connection -> {
Set<byte[]> sets = connection.keys("k*".getBytes());
Set<String> ans = new HashSet<>();
for (byte[] b : sets) {
ans.add(new String(b));
}
return ans;
});

res.put("keys", keys);

Map<String, Object> ttl = new HashMap<>(8);
for (String key : keys) {
ttl.put(key, getTtl(key));
}
res.put("ttl", ttl);
return res;
}

返回结果如下,注意返回的ttl失效时间

4. 自定义失效时间扩展

虽然上面可以实现失效时间指定,但是用起来依然不是很爽,要么是全局设置为统一的失效时间;要么就是在代码里面硬编码指定,失效时间与缓存定义的地方隔离,这就很不直观了

接下来介绍一种,直接在注解中,设置失效时间的case

如下面的使用case

1
2
3
4
5
6
7
8
9
/**
* 通过自定义的RedisCacheManager, 对value进行解析,=后面的表示失效时间
* @param key
* @return
*/
@Cacheable(value = "ttl=30")
public String ttl(String key) {
return "k_" + key;
}

自定义的策略如下:

  • value中,等号左边的为cacheName, 等号右边的为失效时间

要实现这个逻辑,可以扩展一个自定义的RedisCacheManager,如

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class TtlRedisCacheManager extends RedisCacheManager {
public TtlRedisCacheManager(RedisCacheWriter cacheWriter, RedisCacheConfiguration defaultCacheConfiguration) {
super(cacheWriter, defaultCacheConfiguration);
}

@Override
protected RedisCache createRedisCache(String name, RedisCacheConfiguration cacheConfig) {
String[] cells = StringUtils.delimitedListToStringArray(name, "=");
name = cells[0];
if (cells.length > 1) {
long ttl = Long.parseLong(cells[1]);
// 根据传参设置缓存失效时间
cacheConfig = cacheConfig.entryTtl(Duration.ofSeconds(ttl));
}
return super.createRedisCache(name, cacheConfig);
}
}

重写createRedisCache逻辑, 根据name解析出失效时间;

注册使用方式与上面一致,声明为Spring的bean对象

1
2
3
4
5
6
7
@Primary
@Bean
public RedisCacheManager ttlCacheManager(RedisConnectionFactory redisConnectionFactory) {
return new TtlRedisCacheManager(RedisCacheWriter.lockingRedisCacheWriter(redisConnectionFactory),
// 默认缓存配置
this.getRedisCacheConfigurationWithTtl(60));
}

测试case如下

1
2
3
4
5
6
7
@GetMapping(path = "ttl")
public Map ttl(String k) {
Map<String, Object> res = new HashMap<>();
res.put("execute", extendDemo.ttl(k));
res.put("ttl", getTtl("ttl::" + k));
return res;
}

验证结果如下

5. 小结

到此基本上将Spring中缓存注解的常用姿势都介绍了一下,无论是几个注解的使用case,还是自定义的key策略,失效时间指定,单纯从使用的角度来看,基本能满足我们的日常需求场景

下面是针对缓存注解的一个知识点抽象

缓存注解

  • @Cacheable: 缓存存在,则从缓存取;否则执行方法,并将返回结果写入缓存
  • @CacheEvit: 失效缓存
  • @CachePut: 更新缓存
  • @Caching: 都注解组合

配置参数

  • cacheNames/value: 可以理解为缓存前缀
  • key: 可以理解为缓存key的变量,支持SpEL表达式
  • keyGenerator: key组装策略
  • condition/unless: 缓存是否可用的条件

默认缓存ke策略y

下面的cacheNames为注解中定义的缓存前缀,两个分号固定

  • 单参数:cacheNames::arg
  • 无参数: cacheNames::SimpleKey [], 后面使用 SimpleKey []来补齐
  • 多参数: cacheNames::SimpleKey [arg1, arg2...]
  • 非基础对象:cacheNames::obj.toString()

缓存失效时间

失效时间,本文介绍了两种方式,一个是集中式的配置,通过设置RedisCacheConfiguration来指定ttl时间

另外一个是扩展RedisCacheManager类,实现自定义的cacheNames扩展解析

Spring缓存注解知识点到此告一段落,我是一灰灰,欢迎关注长草的公众号一灰灰blog

III. 不能错过的源码和相关知识点

0. 项目

系列博文

源码

1. 一灰灰Blog

尽信书则不如,以上内容,纯属一家之言,因个人能力有限,难免有疏漏和错误之处,如发现bug或者有更好的建议,欢迎批评指正,不吝感激

下面一灰灰的个人博客,记录所有学习和工作中的博文,欢迎大家前去逛逛

一灰灰blog


打赏 如果觉得我的文章对您有帮助,请随意打赏。
分享到